State of Wisconsin

CORRESPONDENCE/MEMORANDUM

JUL 1 2 1994

DATE:

July 6, 1994

MOTIFICATION CONTRACTION SECTION U.S. CHA, RECEDIN V

FILE CODE: 4530 FID #: 436 036 700

Rec'd: 6/27/94

witnessed: Y (JC)

TO:

FILES

55 071 00053

FROM:

Andy Seeber - AM/7

SUBJECT: Review of Stack Test Performed at Red Arrow Products, Manitowoc

I. SOURCE

Red Arrow Products 1226 S. Water St. Manitowoc, WI 54221

Permit: 85-IRS-043A, Issued 6/17/91 Stack/Process: S01, P01 (sawdust dryer)

Particulates = Method 5 + backhalf

Test Date: 6/1/94

Test Firm: Badger Labs.

1110 S. Oneida St.

- Appleton, WI 54915

Crew Chief: Mr. Bruce Lamers (414) 739-9213

Process Description: Red Arrow tested their Heil SD-22 rotary drum

sawdust dryer. The dried sawdust and exhaust gases

are separated in a cyclone prior to the Fisher-

Klosterman collector.

III. SUMMARY OF RESULTS

TABLE 1

<u>Limits</u>	<u>Emission</u>	<u>Compliance</u>
$0.20 \# /10^3 \#$	0.17	Y
10.00 #/hr	8.45	Y
*10.04 #/hr	8.45	Y

^{*} process weight rate equation

IV. DISCUSSION OF RESULTS

The results are shown in the above Table. This is a retest of the same system tested on 2/17/94 indicating noncompliance. The permit limitation is the most restrictive of the those listed in Table 1. The most restrictive limitation is the 0.20 $\#/10^3\#$ limit. Process P01 is in compliance with the particulate limitation.

cc: Jim Crawford - LMD Joe Perez - AM/7 USEPA Region V

Location:Sawdust Dryer	Test #	1	Date:	6-1-94
Static Pressure= Barometric Pressure= Meter h Coeff= C Factor= Dry Gas Meter Volume= Water Collected= Absolute Stack Pressure= Absolute Meter Pressure= Percent Oxygen= Percent Carbon Dioxide= Percent Nitrogen & CO=	29.49 1.84 1.013 60.220 187 29.47 29.73 18.4 2.0 79.6	Absolute Absolute Ave sqrt Stack, di Stack Are Pitot tul Particula Total San Nozzle An Time=	Meter Temp delta p= ia.= ea= pe Coeff= ates = mpling Timp rea=	0=645.1 0=525.7 1.16043 24 3.142 0.84 467 0=60 0.00032 12:50-13:55
Volume of Sample at Standa:	rd Conditic	ns, Dry B	asis	
Vmstd=		60.885	cubic fe	et
Volume of Water Vapor in S	ample at St	andard Co	nditions.	
Vwstd= <u>8.802</u> cubic feet		et		
Proportion of Water Vapor	in Gas Stre	am		
Bwo=	Bwo= 0.126			
Concentration of Particula	te Matter,	Dry Basis		
C's=		<u>0.1181</u> gr/dscf		√'
Cs=		<u>1.691e-05</u> lb/dscf		
Dry Molecular Weight of St	ack Gas			
Md=		29.056		
Molecular Weight of Stack	Gas, Wet B	asis		
Ms=		<u>27.660</u>	l	
Stack Gas Velocity				
Vs=		74.134	<u> </u>	
Volumetric Flow Rate, Dry	Basis, Sta	ndard Con	ditions	
Qs=		590541	dscfh	
Emission Rate				
E-R-=		9.99	lb/hr.	F.
Percent of Isokinetic Sam	pling			
$\Gamma =$	16	99.8		

Location:Sawdust Dryer	Test	# 2 Dat	e: 6-1-94
Static Pressure= Barometric Pressure= Meter h Coeff= C Factor= Dry Gas Meter Volume= Water Collected= Absolute Stack Pressure= Absolute Meter Pressure= Percent Oxygen= Percent Carbon Dioxide= Percent Nitrogen & CO=	29.74 19.2 1.4 79.4	Nozzle Diameter: Absolute Stack The Absolute Meter The Ave sqrt delta processed to the Stack, dia. = Stack Area = Pitot tube Coeff Particulates = Total Sampling The Average Area = Time = Time = Total Sampling The Area = Time = Total Sampling The Area = Time = T	Temp=636.7 Temp=528.0 D= 1.17759 24 3.142 T= 0.84 312.2 Time=60 0.00032 14:31-16:11
Volume of Sample at Standar			
Vmstd=		61.376 cubic	feet
Volume of Water Vapor in Sa	ample at S	tandard Conditions	; <u>.</u>
Vwstd=		<u>6.637</u> cubic	feet
Proportion of Water Vapor i	in Gas Stre	eam	
Bwo=		0.098	÷
Concentration of Particulat	e Matter,	Dry Basis	
C's=			f
Cs=		1.122e-05 lb/dsc	f
Dry Molecular Weight of Sta	ick Gas		
Md=		28.992	
Molecular Weight of Stack G	Sas, Wet Ba	esis	
Ms=		27.919	
Stack Gas Velocity			
Vs=		74.394	
Volumetric Flow Rate, Dry B	Basis, Star	dard Conditions	
Qs=		<u>620112</u> dscfh	
Emission Rate			
E.R.=		6.96 lb/hr.	P
Percent of Isokinetic Sampl	ing		
Υ			

95.8

19

I =

Location:Sawdust Dryer	Test	# 3 	Date:	6-1-94
Static Pressure= Barometric Pressure= Meter h Coeff= C Factor=	-0.33 29.49 1.84 1.013 61.248 167 29.47 29.74 18.6 2.0	Nozzle Diam Absolute Stabsolute Mer Absolute Mer Ave sqrt der Stack, dia.: Stack Area= Pitot tube (Particulates Total Sample	eter= ack Temp ter Temp lta p= = Coeff= ing Time	0.244 =641.7 =531.0 1.17109 24 3.142 0.84 387.1 =60 0.00032
Volume of Sample at Standard	d Conditio			
Vmstd=		<u>61.325</u> cu	ıbic feet	t
Volume of Water Vapor in Sar	mple at St	andard Condit	ions.	
Vwstd=				_
Proportion of Water Vapor ir	n Gas Stre			
Bwo=		0.114		
Concentration of Particulate	Matter,	Dry Basis		
C's=		<u>0.0972</u> gr	/dscf	
Cs=		<u>1.392e-05</u> lb	/dscf	
ory Molecular Weight of Stac	k Gas			
Md=		29.064		
Molecular Weight of Stack Ga	s, Wet Ba:	sis		
Ms=		27.807		
tack Gas Velocity				
Vs=		74.423		
olumetric Flow Rate, Dry Bas	sis, Stand	dard Condition	ıs	
Qs=		<u>604584</u> dsc		
mission Rate				
E.R.=		<u>8.41</u> lb/	hr.	
ercent of Isokinetic Samplir	ng			
I=	22	98.2		

II. Process Description

The exhalpt stack carries exhaust gases from the burner and sawdust dryer. The burner is used to generate the heat needed to dry the sawdust. The process involves the drying of hardwood sawdust in a Heil model SD-22 rotary dryer. The dried sawdust and exhaust gases are separated in a cyclone prior to the Fisher-Klosterman collector. Particulate emissions are removed by a Fisher Klosterman, Inc.; Model XQ120-26.5 cyclone collector. The pressure drop across the collector average 15.0" H₂O during the first test. The pressure drop across the collector average 14.5" H₂O during the second and third test.

The following is a summary of the Process Throughput:

Process Data

Test Run	Sawdust Dried, tons/hr.
1	5.75
2	4.92
3	<u>5.09</u>
ave.	5.25
**	

III. Comments

The testing on June 1, 1994 was originally planned to simultaneously test the inlet and outlet of the cyclone. The inlet testing was requested by Red Arrow to determine efficiency of the collector. We were not able to seal off the inlet ports very effectively due to the high positive pressure (15 inches H₂O). The inlet testing was dropped because it was felt that to much air was being lost and it might affect the outlet results. Because of this and some problems encountered on the outlet test, the test was scratched and three additional tests were performed on the outlet.

During run number two there was a plug up in the dryer which shut down the system. The testing was stopped for about 40 minutes to correct the problem. No other problems were encountered that we were aware of. We feel the test results presented accurately indicate the emission rate during the test period.